

Aromatic Cyanoalkylation through Double C–H Activation Mediated by Ni(III)

Wen Zhou,[†] Shuai Zheng,[†] Jason W. Schultz,[†] Nigam P. Rath,[‡] and Liviu M. Mirica^{*,†}

[†]Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, United States

[‡]Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121-4400, United States

Supporting Information

ABSTRACT: Herein we report an atom- and stepeconomic aromatic cyanoalkylation reaction that employs nitriles as building blocks and proceeds through C_{sp}^{2} -H and C_{sp}^{3} -H bond activation steps mediated by Ni^{III}. In addition to cyanomethylation with MeCN, regioselective α -cyanoalkylation was observed with various nitrile substrates to generate secondary and tertiary nitriles. Importantly, to the best of our knowledge these are the first examples of C-H bond activation reactions occurring at a Ni^{III} center, which may exhibit different reactivity and selectivity profiles than those corresponding to analogous Ni^{II} centers. These studies provide guiding principles to design catalytic C-H activation and functionalization reactions involving high-valent Ni species.

T he direct functionalization of C–H bonds of unactivated substrates such as alkanes and arenes is of great importance to chemical synthesis and industrial applications.¹ Among the many transition metal catalysts employed in organic chemistry, the low toxicity and low cost of Ni-based catalysts have drawn great attention,² and Ni^{II}-catalyzed C_{sp^2} –H³ and C_{sp^3} –H⁴ bond activation and functionalization reactions have been developed in the past decade. In addition, C_{sp^3} –H bonds α to reactive functional groups can be activated by Ni^{II} complexes in the presence of strong bases.⁵ However, there are no examples of C_{sp^2} –H or C_{sp^3} –H activation/functionalization reactions mediated by high-valent Ni^{III} or Ni^{IV} species. Moreover, only a very limited number of direct aromatic cyanoalkylation reactions using common nitriles have been reported⁶ and none of them can be performed at rt under mild conditions.

Recently, our group has employed the tetradentate ligand N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)-pyridinophane (^{tBu}N4)⁷ and its C-donor derivative ^{tBu}N3C⁻ to stabilize Ni^{III} complexes that exhibit C–C and C–O bond formation reactivity.⁸ Among others, ^{9a} Zargarian et al. have reported that modification of the side arms of "ECE" pincer system (where E is an L type donor and C is the *ipso*-carbon of the phenyl ring) can dramatically impact the properties of the corresponding Ni^{II} complexes, ⁹ and thus we decided to develop ligand derivatives such as ^{Np}N3C⁻ by substituting the *tert*-butyl groups (*t*Bu) with less sterically hindered neopentyl (Np) groups as the two amine N-substituents (Scheme 1). Gratifyingly, the investigated systems undergo both C_{sp}²–H and C_{sp}³–H bond activation at a Ni^{III} center, followed by rapid C–C bond formation to generate the cyanoalkylation product under mild conditions. This Ni^{III}-

Scheme 1. C_{sp}^2 –H Activation and Synthesis of Ni^{II} and Ni^{III} Complexes 1–4

mediated process is both atom- and step-economic. As pointed out by the Nobel laureate Prof. E. Negishi, "many more d-block transition metal-catalyzed green organic synthetic methods will be and will have to be discovered and developed for a sustainable 21st century and beyond",¹⁰ we report herein the first example of C–C bond formation through a double C_{sp}^2 –H and C_{sp}^3 –H bond activation mediated by Ni^{III}. Overall, these studies could provide guidance for the development of catalytic C–H activation and functionalization reactions mediated by high-valent Ni species.

Complexes (^{fBu}N3CH)Ni^{II}Br₂, 1^{fBu}, and (^{Np}N3CH)Ni^{II}Br₂, 1^{Np}, were synthesized in 70% and 63% yields, respectively, by reacting ^{Np}N3CH and ^{fBu}N3CH with NiBr₂(DME). Although no C_{sp}^2 –H bond activation is observed in their solid state structures (Figure 1), 1^{fBu} and 1^{Np} exhibit interesting metal–arene interactions. While the Ni1–C1 and Ni1–H1 distances and the Ni1–H1–C1 angle (2.789 Å, 2.437 Å, and 101.7°) indicate an anagostic interaction in 1^{fBu}, the analogous metrical parameters (2.479 Å, 2.261 Å, and 91.7°, respectively) suggest an appreciable agostic interaction in 1^{Np}, ¹¹ as well as a stronger Ni1–C1 interaction in 1^{Np} suggestive of the possibility of C–H bond activation reactivity. ¹² Also, since C–H bond activation was shown to occur at Pd^{IV} centers, ¹³ we anticipated that high-valent Ni centers should also be able to facilitate a similar process.

Received:March 5, 2016Published:April 27, 2016

Figure 1. ORTEP (50% probability thermal ellipsoids) of 1^{*t*Bu} (left) and 1^{Np} (right). Selected bond distances (Å) and angles (deg^o), 1^{*t*Bu}: Ni1–C1, 2.789(3); Ni1–N1, 1.995(2); Ni1–N2, 2.141(2); Ni1–N3, 3.075(3); Ni1–Br1, 2.432(1); Ni1–Br2, 2.395(1); Ni1–H1, 2.437(1); Ni1–H1–C1, 101.7(2); 1^{Np}: Ni1–C1, 2.479(3); Ni1–N1, 1.984(3); Ni1–N2, 2.363(3); Ni1–N3, 2.255(3); Ni1–Br1, 2.462(1); Ni1–Br2, 2.456(1); Ni1–H1, 2.261(1); Ni1–H1–C1, 91.7(1).

Indeed, addition of 2 equiv of $AgBF_4$ to 1^{Np} at 110 °C in MeCN leads to C_{sp}^2 —H bond activation to generate $[(^{Np}N3C)Ni^{III}Br-(MeCN)]^+$, **2**, in 20% yield. The solid state structure of **2** reveals the $^{Np}N3C^-$ ligand bonds to the Ni^{III} center along with one bromide and one MeCN to form a distorted octahedral geometry (Figure 2, left). Complex **2** is paramagnetic and exhibits an

Figure 2. ORTEP (50% probability thermal ellipsoids) of the cations of **2** (left) and **3** (middle), and neutral complex of **4** (right). Selected bond distances (Å), **2**: Ni1–C1, 1.911(3); Ni1–N1, 1.938(3); Ni1–N2, 2.239(3); Ni1–N3, 2.238(3); Ni1–N4, 2.061(2); Ni1–Br1, 2.373(1); **3**: Ni1–C1, 1.900(2); Ni1–N1, 1.901(2); Ni1–N2, 2.196(2); Ni1–N3, 2.213(2); Ni1–N4, 1.993(2); Ni1–N5, 1.959(2); **4**: Ni1–C1, 1.886(4); Ni1–N1, 1.904(4); Ni1–N2, 2.185(4); Ni1–N3, 2.162(3); Ni1–F1, 1.916(2); Ni1–F2, 1.932(3).

effective magnetic moment μ_{eff} of 1.74 μ_B at 298 K, corresponding to one unpaired electron. The EPR spectrum of 2 (77 K, PrCN glass) reveals a rhombic signal with a g_{ave} value of 2.132, along with superhyperfine coupling to the two axial N donors (I = 1) in the g_z direction and superhyperfine coupling to the Br atom (I = 3/2) in the g_y and g_z directions (Figure 3, left). Overall, the observed structural and EPR parameters for 2 suggest the presence of a Ni^{III} d⁷ center with a d_z^2 ground state.

Additional studies were performed to investigate the observed C_{sp}^2 -H bond activation. First, no C_{sp}^2 -H bond activation was observed for 1^{Np} in the presence of various bases, Ni salt sources, or milder oxidants (Table S1), suggesting that the observed reactivity is occurring at the Ni^{III} stage. Second, while no C_{sp}^2 -H bond activation occurred when 1^{Np} was treated with 2 equiv of TlPF₆, treatment of 1^{Np} with both 2 equiv of TlPF₆ and 1 equiv of NOBF₄ at 110 °C in MeCN generates the C_{sp}^2 -H bond activation Ni^{III} product in 20% yield, similar to that obtained in the presence of AgBF₄ (Table S1), further supporting our

Figure 3. Experimental (PrCN glass, 77 K) and simulated EPR spectra of **2** (left), **3** (middle), and **4** (right). Parameters used for simulations: **2**, $g_x = 2.244$; $g_y = 2.115$ ($A_{Br} = 29.0$ G); $g_z = 2.037$ ($A_{2N} = 12.0$ G, $A_{Br} = 6.0$ G); **3**, $g_x = 2.217$; $g_y = 2.095$; $g_z = 2.041$ ($A_{2N} = 14.0$ G); **4**, $g_x = 2.274$; $g_y = 2.124$ ($A_F = 65.0$ G); $g_z = 2.043$ ($A_{2N} = 13.5$ G, $A_F = 17.5$ G).

hypothesis that a Ni^{III} species is responsible for C–H activation. Finally, no C–H activation was observed when 1^{tBu} was reacted with 2 equiv of AgBF₄ under the same conditions (Table S1), likely due to the inability of the sterically hindered ^{tBu}N3C⁻ ligand to support a Ni…C–H interaction that promotes C–H activation upon oxidation to Ni^{III} (although the slightly different electronic properties of the *N*-alkyl substituents may also play a role). These studies provide evidence for an oxidatively induced C_{sp}^2 –H bond activation at the Ni^{III} center of 1^{Np}, in which the less steric neopentyl substituents enable an agostic interaction between the Ni center and C–H bond to be activated.

To further probe the reactivity of Ni^{III} centers, the green airstable Ni^{III} complex [(^{Np}N3C)Ni^{III}(MeCN)₂](SbF₆) (PF₆), 3, was prepared by reacting complex 2 with 1 equiv of $AgSbF_6$ (Scheme 1). The X-ray structure of 3 reveals the Ni^{III} center has two *cis* coordination sites available for exogenous ligands (Figure 2, middle). Indeed, when 3 was reacted with 2.2 equiv of AgF in THF, a bluish-green air-stable complex $(^{Np}N3C)\hat{Ni}^{III}F_2$, 4, was obtained and structurally characterized (Figure 2, right). Importantly, 4 is the first isolated high-valent organometallic Ni-F complex, although such species have recently been proposed as intermediates in oxidatively induced C-F bond formation.¹⁴ Both 3 and 4 are paramagnetic and exhibit effective magnetic moments $\mu_{\rm eff}$ of 1.71 and 1.77 $\mu_{\rm B}$ at 298 K, corresponding to one unpaired electron. Their EPR spectra (77 K, PrCN glass) reveal rhombic signals with g_{ave} values of 2.118 for 3 and 2.147 for 4, along with superhyperfine coupling to the two axial N donors (I = 1) observed in the g_r direction. When comparing the EPR spectra of 2 and 3, the removal of the Br^{-} ligand (I = 3/2) leads to the loss of the additional superhyperfine coupling in the g_v and g_z directions (Figure 3). Interestingly, the EPR spectrum of 4 was best simulated using superhyperfine coupling in the g_y and g_z directions to only one F⁻ ion (I = 1/2). This is further supported by the slightly different EPR spectra obtained when 3 was reacted with either 1 equiv or 5 equiv of AgF in MeCN (Figure S1), suggesting that 4 exists predominantly as the monofluoride species 5 in solution. In addition, the ^{'19}F NMR spectrum of 4 reveals a broad peak at -35.8 ppm, indicating a rapid exchange between the dissociated fluoride and the fluoride bonded to the Ni^{III} center.

Initial reactivity studies using 4 focused on C–F and C–CF₃ bond formation reactions, given the recently proposed involvement of high-valent Ni species in such transformations.^{14,15} We first attempted to synthesize $[(^{Np}N3C)Ni^{III}(CF_3)-(MeCN)]^+$, 6, by reacting 4 with Me₃SiCF₃.¹⁶ However, when 4 is reacted with 2 equiv of Me₃SiCF₃ in MeCN, the cyanomethylation product $^{Np}N3CCH_2CN$ is generated quantitatively (Scheme 2). Alternatively, when 4 is reacted with 2 equiv of Me₃SiCF₃ at -35 °C in THF, the *in situ* generation of

Scheme 2. Cyanomethylation of 4 with Me₃SiCF₃

 $[(^{NP}N3C)Ni^{III}(CF_3)]^+$ is observed by ESI-MS (*m/z* 505.2211, calcd for $[(NPN3C)Ni^{III}(CF_3)]^+$: 505.2209) and EPR ($g_{ave} = 2.154$, Figure S3). Addition of MeCN (15% v/v in THF) to freshly made $[(^{NP}N3C)Ni^{III}(CF_3)]^+$ generates the cyanomethylation product $^{NP}N3CCH_2CN$, as observed by ESI-MS (*m/z* 419.3171, calcd for $[^{NP}N3CCH_2CNH]^+$, $C_{27}H_{39}N_4$: 419.3170), suggesting that the C–H bond activation of MeCN and subsequent C–C bond formation is mediated by **6**.

Since cyanomethylation is a powerful organic transformation and current cyanomethylation reactions usually require multiple steps and harsh reaction conditions,¹⁷ we further investigated this one-step cyanomethylation reaction occurring rapidly at rt. When 4 is reacted with 2 equiv of Me₃SiCF₃ in CD₃CN, ^{Np}N3CCD₂CN was also generated quantitatively within minutes at rt, while CF₃D (-78.2 ppm) was detected by ¹⁹F NMR, indicating that CF₃⁻ likely serves as the base. Moreover, an intermolecular kinetic isotope effect $k_{\rm H}/k_{\rm D} = 1.9 \pm 0.1$ at rt was measured when 4 was reacted with 2 equiv of Me₃SiCF₃ in CD₃CN/MeCN (1:1), suggesting that the C–H bond activation is favored over C–D bond activation. In the absence of Me₃SiCF₃, no reaction between 4 and MeCN is observed, further supporting that 6 is the reactive species in this case.

As CF_3^- is proposed to serve as the base, we used a common base such as KO^tBu; indeed, the cyanomethylation proceeded quantitatively for both MeCN and CD₃CN (Scheme 3, entries 1–2). Besides MeCN and CD₃CN, cyanoalkylation of nitriles such as EtCN and *n*PrCN (Scheme 3, entries 3–4) can also occur at rt to generate the secondary nitrile products ^{Np}N3CCHMeCN and ^{Np}N3CCHEtCN, in 84% and 79% yields, respectively. Based on the NMR spectra, this cyanoalkylation is regioselective for the α position of the nitrile substrate. Excitingly, cyanoalkylation

^{*a*}The nitrile acts also as the reaction solvent. ^{*b*}Yield based on isolated product. ^{*c*}Yield based on NMR integration. ^{*d*}The remaining yield corresponds to protonated ligand ^{NP}N3CH side product.

with Me₂CHCN can also be performed to generate the tertiary nitrile ^{Np}N3CCMe₂CN in 33% yield (Scheme 3, entry 5), an uncommon example of C–C bond formation involving a tertiary alkyl group.¹⁸ The trend of decreasing yield of cyanoalkylation products from primary to secondary to tertiary nitriles suggests that most likely a ligand rearrangement occurs following C_{sp}^{3} –H bond activation (Scheme 4), as observed previously. Finally, the

Scheme 4. Possible Mechanism of C_{sp} ³–H Bond Activation of MeCN and Subsequent C–C Bond Formation

use of 1 equiv of MeCN in THF generates the cyanomethylation product $^{\rm Np}N3CCH_2CN$ in 59% yield, supporting the possibility of using various nitrile substrates that are not also the solvent of the reaction.

In order to probe the mechanism of this C_{sp³}-H bond activation and subsequent C-C bond formation, the reaction between 3 and KO^tBu was monitored by EPR. The simulation of the resulting EPR spectrum strongly suggests the formation of (^{Np}N3C)Ni^{III}(O^tBu)₂, by analogy to our previously reported Ni^{III}-bisalkoxide complexes (Figure S6).⁸ When MeCN (15% v/ v in THF) was added to the above reaction, the EPR signal quickly disappeared and the cyanomethylation product $\overline{^{N_{p}}N3CCH_{2}CN}$ was produced quantitatively. Based on these experimental results, a reaction mechanism is proposed, as shown in Scheme 4 for the MeCN substrate. While addition of excess KO^tBu to 3 generates (^{Np}N3C)Ni^{III}(O^tBu)₂, it is expected that in the presence of MeCN an asymmetric complex $[(^{Np}N3C)Ni^{III}(O^{t}Bu)(MeCN)]^{+}$, 7, is the predominant species.⁸ The latter intermediate is proposed to promote the C_{sp}^{3} -H bond activation of MeCN assisted by ${}^{t}BuO^{-}$ to form 8, [(${}^{Np}N3C$)- $Ni^{III}(N=C=CH_2)$ ⁺. Rearrangement of the $^-N=C=CH_2$ ligand would generate [(^{Np}N3C)Ni^{III}(CH₂=C=N)]⁺, 9, which contains a new Ni-C bond, followed by reductive elimination from this 5-coordinate species to generate the cyanomethylation product ^{Np}N3CCH₂CN.¹⁹ Notably, a similar $N=C=CH_2^{-1}$ ligand flip was recently reported for a Ni^{II} system and proposed to be thermodynamically favored based on theoretical calculations.^{5a} While ^tBuO⁻ may be a strong enough base in MeCN to deprotonate the solvent,²⁰ the observed quantitative cyanomethylation reaction is most likely promoted by the Ni^{III} center that plays an important role in activating the nitrile for α -C-H bond activation.^{5a} Finally, performing the cyanoalkylation reaction in the presence of radical traps PBN and DMPO did not reveal the formation of radical species, arguing against a radical mechanism.^{16b,15c}

The above reactivity studies show that the oxidatively induced C_{sp}^2 -H bond activation as well as the C_{sp}^3 -H bond activation reaction and the subsequent C-C bond formation can be performed using the same (NPN3CH)Ni system, suggesting that these transformations could be performed in a one-pot transformation. Indeed, when $^{Np}N3CH$ is reacted with NiBr₂(DME) and 2 equiv of AgBF₄ at 110 °C for 12 h in 1:1 THF/MeCN, followed by addition of 4 equiv KO^tBu, the cyanomethylation product ^{Np}N3CCH₂CN was generated in 22% yield. The product yield is likely limited by the oxidatively induced C_{sp}^2 -H bond activation step, since the reaction of ^{Np}N3CBr with Ni(COD)₂ in MeCN, followed by addition of 2 equiv of AgBF₄ and 4 equiv of KO^tBu, afforded ^{Np}N3CCH₂CN in 86% yield. Overall, while the oxidatively induced C_{sp}^2 -H bond activation step needs to be optimized, these results suggest that an oxidative aromatic cyanoalkylation reaction involving a double C-H activation mediated by Ni^{III} could be potentially developed into a catalytic transformation.

In conclusion, we have shown that by employing the less bulky $^{\rm Np}\rm N3C^-$ ligand, the corresponding ($^{\rm Np}\rm N3C\rm H)\rm Ni^{II}\rm Br_2$ complex can undergo oxidatively induced $\rm C_{sp}^2-\rm H$ bond activation at a Ni^{\rm III} center. In addition, isolated ($^{\rm Np}\rm N3C$)Ni^{\rm III} complexes were shown to perform $\rm C_{sp}^3-\rm H$ bond activation of various primary, secondary, and tertiary nitriles in the presence of a base, followed by rapid cyanoalkylation at room temperature. To the best of our knowledge, these are the first examples of C–H bond activation reactions occurring at a Ni^{\rm III} center. Finally, since the $\rm C_{sp}^2-\rm H/C_{sp}^3-\rm H$ bond activations and subsequent C–C bond formation can be performed in one pot, this suggests the possibility of designing an atom- and step-economic catalytic oxidative coupling of arenes and nitriles involving high-valent Ni species. Current efforts are focused on expanding the substrate scope of C–H bond activation and functionalization and rendering this transformation catalytic.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b02405.

Synthetic details, spectroscopic characterization, reactivity studies, and X-ray data (PDF) Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*mirica@wustl.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF (CAREER CHE-1255424) for support.

REFERENCES

(1) (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507.
(b) Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 2.

(2) (a) Hu, X. Chem. Sci. 2011, 2, 1867. (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346. (c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.

(3) (a) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 12307. (b) Xin, P. Y.; Niu, H. Y.; Qu, G. R.; Ding, R. F.; Guo, H. M.

Chem. Commun. 2012, 48, 6717. (c) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308. (d) Cong, X. F.; Li, Y. X.; Wei, Y.; Zeng, X. M. Org. Lett. 2014, 16, 3926. (e) Orlov, N. V.; Chistyakov, I. V.; Khemchyan, L. L.; Ananikov, V. P.; Beletskaya, I. P.; Starikova, Z. A. J. Org. Chem. 2014, 79, 12111. (f) Song, W. F.; Lackner, S.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 2477. (g) Misal Castro, L. C.; Obata, A.; Aihara, Y.; Chatani, N. Chem. - Eur. J. 2016, 22, 1362.

(4) (a) Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc.
2011, 133, 3264. (b) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew. Chem., Int. Ed.
2013, 52, 4453. (c) Wertjes, W. C.; Wolfe, L. C.; Waller, P. J.; Kalyani, D.
Org. Lett. 2013, 15, 5986. (d) Aihara, Y.; Chatani, N. J. Am. Chem. Soc.
2014, 136, 898. (e) Iyanaga, M.; Aihara, Y.; Chatani, N. J. Org. Chem.
2014, 79, 11933. (f) Li, M. L.; Dong, J. X.; Huang, X. L.; Li, K. Z.; Wu,
Q.; Song, F. J.; You, J. S. Chem. Commun. 2014, 50, 3944. (g) Wu, X. S.;
Zhao, Y.; Ge, H. B. Chem. - Eur. J. 2014, 20, 9530. (h) Wu, X. S.; Zhao,
Y.; Ge, H. B. J. Am. Chem. Soc. 2014, 136, 1789.

(5) (a) Oertel, A. M.; Ritleng, V.; Chetcuti, M. J.; Veiros, L. F. J. Am. Chem. Soc. 2010, 132, 13588. (b) Oertel, A. M.; Ritleng, V.; Busiah, A.; Veiros, L. F.; Chetcuti, M. J. Organometallics 2011, 30, 6495.
(c) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. R. Angew. Chem., Int. Ed. 2013, 52, 7523.

(6) (a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330.
(b) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051. (c) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578. (d) López, R.; Palomo, C. Angew. Chem., Int. Ed. 2015, 54, 13170.

(7) Zheng, B.; Tang, F. Z.; Luo, J.; Schultz, J. W.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc. **2014**, 136, 6499.

(8) (a) Zhou, W.; Schultz, J. W.; Rath, N. P.; Mirica, L. M. J. Am. Chem. Soc. 2015, 137, 7604. (b) Zhou, W.; Rath, N. P.; Mirica, L. M. Dalton Trans. 2016, DOI: 10.1039/C6DT00064A.

(9) (a) Salah, A. B.; Zargarian, D. Dalton Trans. 2011, 40, 8977.
(b) Vabre, B.; Spasyuk, D. M.; Zargarian, D. Organometallics 2012, 31, 8561. (c) van Koten, G.; Milstein, D. Top. Organomet. Chem. 2013, 40, 1.
(d) Zargarian, D.; Castonguay, A.; Spasyuk, D. M. Top. Organomet. Chem. 2013, 40, 131. (e) Mougang-Soume, B.; Belanger-Gariepy, F.; Zargarian, D. Organometallics 2014, 33, 5990. (f) Cloutier, J. P.; Vabre, B.; Moungang-Soume, B.; Zargarian, D. Organometallics 2015, 34, 133. (10) Negishi, E.-i. Angew. Chem., Int. Ed. 2011, 50, 6738.

(11) Brookhart, M.; Green, M. L. H.; Parkin, G. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 6908.

(12) Barthes, C.; Lepetit, C.; Canac, Y.; Duhayon, C.; Zargarian, D.; Chauvin, R. Inorg. Chem. 2013, 52, 48.

(13) (a) Racowski, J. M.; Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18022. (b) Maleckis, A.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 6618.

(14) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456.

(15) (a) Bour, J. R.; Camasso, N. M.; Sanford, M. S. J. Am. Chem. Soc. **2015**, 137, 8034. (b) Camasso, N. M.; Sanford, M. S. Science **2015**, 347, 1218. (c) Tang, F. Z.; Rath, N. P.; Mirica, L. M. Chem. Commun. **2015**, *51*, 3113.

(16) (a) Kieltsch, I.; Dubinina, G. G.; Hamacher, C.; Kaiser, A.; Torres-Nieto, J.; Hutchison, J. M.; Klein, A.; Budnikova, Y.; Vicic, D. A. *Organometallics* **2010**, *29*, 1451. (b) Zhang, C. P.; Wang, H.; Klein, A.; Biewer, C.; Stimat, K.; Yarnaguchi, Y.; Xu, L.; Gomez-Benitez, V.; Vicic, D. A. *J. Am. Chem. Soc.* **2013**, *135*, 8141. (c) Yu, S.; Dudkina, Y.; Wang, H.; Kholin, K. V.; Kadirov, M. K.; Budnikova, Y. H.; Vicic, D. A. *Dalton Trans.* **2015**, *44*, 19443.

(17) (a) Velcicky, J.; Soicke, A.; Steiner, R.; Schmalz, H. G. J. Am. Chem. Soc. 2011, 133, 6948. (b) Lindsay-Scott, P. J.; Clarke, A.; Richardson, J. Org. Lett. 2015, 17, 476.

(18) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.

(19) (a) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. **2013**, 135, 12004. (b) Breitenfeld, J.; Wodrich, M. D.; Hu, X. Organometallics **2014**, 33, 5708.

(20) Olmstead, W. N.; Margolin, Z.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3295.